The Regression Equation Sections 5.3, 5.4

Lecture 13

Robb T. Koether

Hampden-Sydney College

Fri, Feb 5, 2016

Calculating the Regression Line

- Facts about the Regression Line
- Assignment

Calculating the Regression Line

Pacts about the Regression Line

Assignment

Calculating the Regression Line

The Equation of the Regression Line

The equation of the regression line is

$$\hat{y} = a + bx$$

where

$$b=r\left(\frac{s_y}{s_x}\right)$$

and

$$a = \overline{y} - b\overline{x}$$
.

Example (Calculating the Regression Line)

Consider again the data

Χ	y
3	40
5	80
7	160
9	180
16	240

• Find the equation of the regression line.

Example (Calculating the Regression Line)

Consider again the data

Χ	y
3	40
5	80
7	160
9	180
16	240

- Find the equation of the regression line.
- To do that, we need to find \overline{x} , \overline{y} , s_x , s_y , and r.

Example (Calculating the Regression Line)

Using the TI-83, we get

$$\overline{x} = 8,$$
 $\overline{y} = 140,$
 $s_x = 5,$
 $s_y = 80,$
 $r = 0.9375.$

Then

$$b = (0.9375) \left(\frac{80}{5}\right) = 15$$

and

$$a = 140 - (15)(8) = 20.$$

Example (Height vs. Weight)

Height (x)	Weight (y)
70	185
65	140
71	180
76	220
68	150
67	170
68	185
72	205
74	210
69	155

• Find the equation of the regression line and use it to predict the weight of persons of heights 68, 70, 72, and 84 inches.

Calculating the Regression Line

- Pacts about the Regression Line
- Assignment

Facts about the Regression Line

- The regression line always passes through the point $(\overline{x}, \overline{y})$.
- The regression line can be used to predict y given x, but it should not be used to predict x given y. Regressing x on y gives a different line altogether. (Why?)
- The square of the correlation, r^2 , measures the fraction of the variation in y that is "explained" by the variation in x.

Example (Explaining Variation)

- In the free-lunch/graduation rate example, r = -0.8544, so $r^2 = 0.73$.
- We conclude that the variation in the free-lunch rate explains, or accounts for, 73% of the variation in the graduation rate.
- The remaining 27% is "unexplained," or unaccounted for, by the model.

Example (Explaining Variation)

- In the height/weight example, r = 0.89375, so $r^2 = 0.7988$.
- We conclude that the variation in height explains, or accounts for, 80% of the variation in weight.
- The remaining 20% is "unexplained," or unaccounted for, by the model.

Calculating the Regression Line

- Pacts about the Regression Line
- Assignment

Assignment

Assignment

- Read Sections 5.1, 5.2, 5.3.
- Apply Your Knowledge: 1, 2, 4, 5.
- Check Your Skills: 20, 21, 23, 24, 25, 26.
- Exercises: 30, 34, 35(a-b), 37, 38.